
CS 61A Higher Order Functions
Spring 2020 Discussion 2: February 5, 2020 Solutions

1 Higher Order Functions
A Note on Lambda Expressions
A lambda expression evaluates to a function, called a lambda function. For

example, lambda y: x + y is a lambda expression, and can be read as “a

function that takes in one parameter y and returns x + y.”

A lambda expression by itself evaluates to a function but does not bind it to

a name. Also note that the return expression of this function is not evaluated

until the lambda is called. This is similar to how defining a new function

using a def statement does not execute the function’s body until it is later

called.

>>> what = lambda x : x + 5

>>> what

<function <lambda> at 0xf3f490>

Unlike def statements, lambda expressions can be used as an operator or

an operand to a call expression. This is because they are simply one-line

expressions that evaluate to functions.

>>> (lambda y: y + 5)(4)

9

>>> (lambda f, x: f(x))(lambda y: y + 1, 10)

11

2 Higher Order Functions

HOFs in Environment Diagrams
Recall that an environment diagram keeps track of all the variables that

have been defined and the values they are bound to. However, values are

not necessarily only integers and strings. Environment diagrams can model

more complex programs that utilize higher order functions.

x = 4

def add_num(x):

return lambda y: x + y

add_two = add_num(2)

add_two(3)

Lambdas are represented similarly to functions in environment diagrams, but

since they lack instrinsic names, the lambda symbol (λ) is used instead.

The parent of any function (including lambdas) is always the frame in which

the function is defined. It is useful to include the parent in environment

diagrams in order to find variables that are not defined in the current frame.

In the previous example, when we call add two (which is really the lambda

function), we need to know what x is in order to compute x + y. Since x is

not in the frame f2, we look at the frame’s parent, which is f1. There, we

find x is bound to 2.

As illustrated above, higher order functions that return a function have their

return value represented with a pointer to the function object.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Higher Order Functions 3

Questions
1.1 Draw the environment diagram that results from executing the code below.

1 def curry2(h):

2 def f(x):

3 def g(y):

4 return h(x, y)

5 return g

6 return f

7 make_adder = curry2(lambda x, y: x + y)

8 add_three = make_adder(3)

9 add_four = make_adder(4)

10 five = add_three(2)

Solution: pythontutor

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

http://pythontutor.com/composingprograms.html#code=def%20curry2%28h%29%3A%0A%20%20%20%20def%20f%28x%29%3A%0A%20%20%20%20%20%20%20%20def%20g%28y%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%20h%28x,%20y%29%0A%20%20%20%20%20%20%20%20return%20g%0A%20%20%20%20return%20f%0Amake_adder%20%3D%20curry2%28lambda%20x,%20y%3A%20x%20%2B%20y%29%0Aadd_three%20%3D%20make_adder%283%29%0Aadd_four%20%3D%20make_adder%284%29%0Afive%20%3D%20add_three%282%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

4 Higher Order Functions

1.2 Write curry2 as a lambda function

curry2 = lambda h: lambda x: lambda y: h(x, y)

1.3 Draw the environment diagram that results from executing the code below.

1 n = 7

2

3 def f(x):

4 n = 8

5 return x + 1

6

7 def g(x):

8 n = 9

9 def h():

10 return x + 1

11 return h

12

13 def f(f, x):

14 return f(x + n)

15

16 f = f(g, n)

17 g = (lambda y: y())(f)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Higher Order Functions 5

Video Walkthrough

pythontutor

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://www.youtube.com/watch?v=wBQNAJnBDvA
http://pythontutor.com/composingprograms.html#code=n%20%3D%207%0A%0Adef%20f%28x%29%3A%0A%20%20%20%20n%20%3D%208%0A%20%20%20%20return%20x%20%2B%201%0A%0Adef%20g%28x%29%3A%0A%20%20%20%20n%20%3D%209%0A%20%20%20%20def%20h%28%29%3A%0A%20%20%20%20%20%20%20%20return%20x%20%2B%201%0A%20%20%20%20return%20h%0A%0Adef%20f%28f,%20x%29%3A%0A%20%20%20%20return%20f%28x%20%2B%20n%29%0A%0Af%20%3D%20f%28g,%20n%29%0Ag%20%3D%20%28lambda%20y%3A%20y%28%29%29%28f%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

6 Higher Order Functions

1.4 The following question is extremely difficult. Something like this would not

appear on the exam. Nonetheless, it’s a fun problem to try.

Draw the environment diagram that results from executing the code below.

Note that using the + operator with two strings results in the second string

being appended to the first. For example "C" + "S" concatenates the two

strings into one string "CS"

1 y = "y"

2 h = y

3 def y(y):

4 h = "h"

5 if y == h:

6 return y + "i"

7 y = lambda y: y(h)

8 return lambda h: y(h)

9 y = y(y)(y)

Video walkthrough

pythontutor

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://www.youtube.com/watch?v=MlRfJaGBeAY&feature=youtu.be
http://pythontutor.com/composingprograms.html#code=y%20%3D%20%22y%22%0Ah%20%3D%20y%0Adef%20y%28y%29%3A%0A%20%20%20%20h%20%3D%20%22h%22%0A%20%20%20%20if%20y%20%3D%3D%20h%3A%0A%20%20%20%20%20%20%20%20return%20y%20%2B%20%22i%22%0A%20%20%20%20y%20%3D%20lambda%20y%3A%20y%28h%29%0A%20%20%20%20return%20lambda%20h%3A%20y%28h%29%0Ay%20%3D%20y%28y%29%28y%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Higher Order Functions 7

Writing Higher Order Functions
1.5 Write a function that takes in a function cond and a number n and prints

numbers from 1 to n where calling cond on that number returns True.

def keep_ints(cond, n):

"""Print out all integers 1..i..n where cond(i) is true

>>> def is_even(x):

... # Even numbers have remainder 0 when divided by 2.

... return x % 2 == 0

>>> keep_ints(is_even, 5)

2

4

"""

i = 1

while i <= n:

if cond(i):

print(i)

i += 1

Video walkthrough

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://www.youtube.com/watch?v=Fiw0f5yuQgo&vq=hd1080&t=72m24s

8 Higher Order Functions

1.6 Write a function similar to keep_ints like before, but now it takes in a

number n and returns a function that has one parameter cond. The returned

function prints out numbers from 1 to n where calling cond on that number

returns True.

def make_keeper(n):

"""Returns a function which takes one parameter cond and prints out

all integers 1..i..n where calling cond(i) returns True.

>>> def is_even(x):

... # Even numbers have remainder 0 when divided by 2.

... return x % 2 == 0

>>> make_keeper(5)(is_even)

2

4

"""

def do_keep(cond):

i = 1

while i <= n:

if cond(i):

print(i)

i += 1

return do_keep

Video Walkthrough

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://youtu.be/jL5FgssAFjQ?t=2m36s

Higher Order Functions 9

Self Reference
def print_all(x):

print(x)

return print_all

def print_sums(n):

print(n)

def next_sum(k):

return print_sums(n+k)

return next_sum

Self-reference refers to a particular design of HOF, where a function even-

tually returns itself. In particular, a self-referencing function will not return

a function call, but rather the function object itself. As an example, recall

the print all function from lecture.

Self-referencing functions will oftentimes employ helper functions that refer-

ence the outer function, such as the second example in lecture print sums.

Note that a call to print sums returns next sum. A call to next sum will

return the result of calling print sums which will, in turn, return another

function next sum. This type of pattern is common in self-referencing func-

tions.

Questions
1.1 Write a function print delayed delays printing its argument until the next

function call. print delayed takes in an argument x and returns a new func-

tion delay print. When delay print is called, it prints out x and returns

another delay print.

def print_delayed(x):

"""Return a new function. This new function, when called,

will print out x and return another function with the same

behavior.

>>> f = print_delayed(1)

>>> f = f(2)

1

>>> f = f(3)

2

>>> f = f(4)(5)

3

4

>>> f("hi")

5

<function print_delayed> # a function is returned

"""

def delay_print(y):

return ____________________

return delay_print

def print_delayed(x):

def delay_print(y):

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Higher Order Functions

print(x)

return print_delayed(y)

return delay_print

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Higher Order Functions 11

1.2 Write a function print n that can take in an integer n and returns a re-

peatable print function that can print the next n parameters. After the nth

parameter, it just prints ”done”.

def print_n(n):

"""

>>> f = print_n(2)

>>> f = f("hi")

hi

>>> f = f("hello")

hello

>>> f = f("bye")

done

>>> g = print_n(1)

>>> g("first")("second")("third")

first

done

done

<function inner_print>

"""

def inner_print(x):

if ________________________

print("done")

else:

print(x)

return ____________________

return ________________________

def print_n(n):

def inner_print(x):

if n <= 0:

print("done")

else:

print(x)

return print_n(n-1)

return inner_print

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

1

1. Yes, No, but Sometimes Maybe?

Fill in the environment diagram that results from executing the code below until the entire program is finished,
an error occurs, or all frames are filled. You may not need to use all of the spaces or frames. A complete answer
will:

(a) Add all missing names and parent annotations to all local frames.

(b) Add all missing values created or referenced during execution.

(c) Show the return value for each local frame.

You must list all bindings in the order they first appear in the frame.

def yes(no):
 yes = 'no'
 return no

no = 'no'

def no(no):
 return no + yes(no)

yes = yes(yes)(no)('ok')

func yes(no) [parent=Global]

func no(no) [parent=Global]

Global frame

yes

no

f1: yes [parent= Global]

Return Value

f2: yes [parent= Global]

Return Value

f3: no [parent= Global]

Return Value

f4: yes [parent= Global]

Return Value

'okok'

'okok'

'ok'

'ok'

'ok'

'no'

'no'yes

no

no

yes 'no'

no

yes

no

Try stepping through the code slowly on PythonTutor if this diagram is inconsistent with what you believe to

2

be true. Some notes

When you have a higher order function and pass in multiple operands in one line, like the line that says
yes = yes(yes)(no)... we do not evaluate all the operands at once. For example, we do not evaluate no until
the call to yes(yes) has returned. This is because yes(yes) is tantamount to evaluating the operator for the
next function call on no, and evaluating the operator always precedes evaluating the operand.

Draw pointers for non-primitive data, and write primitive data directly in the box. Primitive expressions
in this course are almost always integers and strings, and non-primitive data are typically things like functions
and lists (which we haven’t learned about yet). A pointer represents a location in memory, so if you draw
a pointer to a primitive that suggests both environment variables refer to the same data in memory when
that may not be the case (i.e., suppose x in f1 is 3 and so is y in Global. Modifying x should not affect the
value of y, but if you draw a pointer to the same number that implies that a change to x will cause a change to y).

If there exists a variable in the global frame like yes and I set yes to be "no" in f1, that does not throw
an error. Instead a new variable in f1 called yes is created. How can that be? Didn’t we learn that we can’t
change the value of variables existing in another frame? Python actually does not interpret yes = "no" in f1
as an attempt to modify the global yes. The most common case in which you’d run into this sort of error would
be if you wrote x = x + 1 where x is exclusively defined in another frame. In this case, the program expects
x to already exist (otherwise, how would we know the value of x + 1?), and if x only exists in global, then
x = x + 1 is interpreted as an attempt to change the existing value that is not in the current frame. Something
like x = 1 does not throw an error because there is no assumption that x already exists in some other frame.

Finally, recall that the value of an argument depends on the frame in which the function was called. This
is because our order of evaluation is evaluate the operator, evaluate the operands, apply the function to the
operands. Hence, the operands are evaluated before the function call is initiated, so they must be evaluated
in the frame in which the call was performed. In this case, the majority of function calls are happening in
the last line of code, which is in the global frame, so we’re going to be evaluating yes’s and no’s in the global
frame most of the time. When working with evaluation in places other than the global frame, we first look
in the current frame for the value of an environment name. If we cannot find that environment name in the
current frame, then we look in its parent and then the parent’s parent and so on. The first time we encounter
the name we are looking for, we stop looking up the frame hierarchy. In f3 the name no exists, so when we try
to evaluate no in f3, we run with the f3 definition and stop looking through our hierarchy. Hence, no is ’ok’ as
defined in f3 instead of a function as defined in global.

	Higher Order Functions

