
CS 61A Data Abstraction, Trees, and Mutability

Spring 2020 Discussion 5: February 26, 2020 Solutions

1 Trees
7

1

3

2

−4 0

8

6

11

16

17

19

20

In computer science, trees are recursive data structures that are widely used in

various settings. The diagram to the right is an example of a tree.

Notice that the tree branches downward. In computer science, the root of a tree

starts at the top, and the leaves are at the bottom.

Some terminology regarding trees:

• Parent node: A node that has branches. Parent nodes can have multiple

branches.

• Child node: A node that has a parent. A child node can only belong to one

parent.

• Root: The top node of the tree. In our example, the node that contains 7 is

the root.

• Label: The value at a node. In our example, all of the integers are values.

• Leaf : A node that has no branches. In our example, the nodes that contain

−4, 0, 6, 17, and 20 are leaves.

• Branch: A subtree of the root. Note that trees have branches, which are

trees themselves: this is why trees are recursive data structures.

• Depth: How far away a node is from the root. In other words, the number

of edges between the root of the tree to the node. In the diagram, the node

containing 19 has depth 1; the node containing 3 has depth 2. Since there are

no edges between the root of the tree and itself, the depth of the root is 0.

• Height: The depth of the lowest leaf. In the diagram, the nodes containing

−4, 0, 6, and 17 are all the “lowest leaves,” and they have depth 4. Thus, the

entire tree has height 4.

In computer science, there are many different types of trees. Some vary in the

number of branches each node has; others vary in the structure of the tree.

2 Data Abstraction, Trees, and Mutability

Implementation
A tree has both a value for the root node and a sequence of branches, which are

also trees. In our implementation, we represent the branches as a list of trees. Since

a tree is an abstract data type, our choice to use lists is just an implementation

detail.

• The arguments to the constructor tree are the value for the root node and

an optional list of branches. If no branches parameter is provided, the default

value [] is used.

• The selectors for these are label and branches.

Note that branches returns a list of trees and not a tree directly. It’s important to

distinguish between working with a tree and working with a list of trees.

We have also provided a convenience function, is_leaf.

Let’s try to create the tree below.

1

3

4 5 6

2

Example tree construction

t = tree(1,

[tree(3,

[tree(4),

tree(5),

tree(6)]),

tree(2)])

Questions
1.1 Write a function that returns the height of a tree. Recall that the height of a tree

is the length of the longest path from the root to a leaf.

def height(t):

"""Return the height of a tree.

>>> t = tree(3, [tree(5, [tree(1)]), tree(2)])

>>> height(t)

2

"""

if is_leaf(t):

return 0

return 1 + max([height(branch) for branch in branches(t)])

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Data Abstraction, Trees, and Mutability 3

alternate solution

return 1 + max([0] + [height(branch) for branch in branches(t)])

Video walkthrough

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://www.youtube.com/watch?v=cZWnevsmb5o&index=2&list=PLx38hZJ5RLZcgrSJp16YmzNwn9hL5JD8q&t=1m45s

4 Data Abstraction, Trees, and Mutability

1.2 Write a function that takes in a tree and squares every value. It should return a

new tree. You can assume that every item is a number.

def square_tree(t):

"""Return a tree with the square of every element in t

>>> numbers = tree(1,

... [tree(2,

... [tree(3),

... tree(4)]),

... tree(5,

... [tree(6,

... [tree(7)]),

... tree(8)])])

>>> print_tree(square_tree(numbers))

1

4

9

16

25

36

49

64

"""

sq_branches = [square_tree(branch) for branch in branches(t)]

return tree(label(t)**2, sq_branches)

Video walkthrough

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://www.youtube.com/watch?v=cZWnevsmb5o&index=2&list=PLx38hZJ5RLZcgrSJp16YmzNwn9hL5JD8q&t=5m3s

Data Abstraction, Trees, and Mutability 5

1.3 Write a function that takes in a tree and a value x and returns a list containing the

nodes along the path required to get from the root of the tree to a node containing

x.

If x is not present in the tree, return None. Assume that the entries of the tree are

unique.

For the following tree, find path(t, 5) should return [2, 7, 6, 5]

2

7

3 6

5 11

15

def find_path(tree, x):

"""

>>> t = tree(2, [tree(7, [tree(3), tree(6, [tree(5), tree(11)])]), tree(15)])

>>> find_path(t, 5)

[2, 7, 6, 5]

>>> find_path(t, 10) # returns None

"""

if _____________________________:

return _____________________________

_____________________________:

path = _____________________________

if _____________________________:

return _____________________________

def find_path(tree, x):

if label(tree) == x:

return [label(tree)]

for b in branches(tree):

path = find_path(b, x)

if path:

return [label(tree)] + path

Video walkthrough

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://www.youtube.com/watch?v=OnLa_VUrWiA&list=PLx38hZJ5RLZcgrSJp16YmzNwn9hL5JD8q&index=3&t=0m11s

6 Data Abstraction, Trees, and Mutability

1.4 Consider a tree ADT t = tree(1, [tree(2), tree(3)]). For each of the following

expressions, answer these two questions:

• What does the expression evaluate to?

• Does the expression violate any abstraction barriers? If so, write an equivalent

expression that does not violate abstraction barriers.

1. label(t)

Evaluates to the label of the entire tree, 1. This is simply using a selector to

get the label, which is not violating any abstraction barriers.

2. t[0]

This expression evaluates to the label of the entire tree, 1. However, it makes

use of the fact that trees are implemented using lists, and violates the abstrac-

tion barrier. An equivalent expression is label(t).

3. label(branches(t)[0])

This expression evaluates to the label of the first branch of t, tree(2). It is

not a violation to index into branches(t) because it is given in the description

of the ADT that branches(t) returns a list of branches.

4. label(branches(t))

This expression evaluates to the first branch of t, tree(2). It is a violation of

the abstraction barrier as it assumesthat label gets the first element of a list.

Treating a non-tree list as a tree is an abstraction violation since if label or

branches change it no longer works

5. is leaf(t[1:][1])

This expression accesses the branches of t by slicing t, [tree(2), tree(3)].

Although this works because this is technically what branches(t) returns, this

is an abstraction violation because we cannot assume the implementation of

branches(t).

It then accesses the second branch by indexing into the list of branches, which

is not an abstraction violation because we are allowed to assume that branches

is a list. This expression evaluates to True because the second branch of t is

a leaf. An equivalent expression is is leaf(branches(t)[1]).

6. [label(b) for b in branches(t)]

This expression uses the branches selector to access the branches of t and

then iterates through it to construct a new list containing the labels of the

branches, [2, 3]. It does not violate any abstraction barriers.

7. Challenge: branches(tree(2, tree(t, [])))[0]

This expression evaluates to t. Note: not tree(t, []). This is because the

constructor tree(2, tree(t, [])) passes tree(t, []) as the branches object,

not as a single branch. Thus, the branches are [t] + [], or just [t]. This is

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Data Abstraction, Trees, and Mutability 7

a violation of the abstraction barrier since you are passing a tree as a list of

branches. An equivalent expression is branches(tree(2, [t]))[0].

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Data Abstraction, Trees, and Mutability

2 Mutation
Let’s imagine you order a mushroom and cheese pizza from La Val’s, and that they

represent your order as a list:

>>> pizza = ['cheese', mushrooms']

A couple minutes later, you realize that you really want onions on the pizza. Based

on what we know so far, La Val’s would have to build an entirely new list to add

onions:

>>> pizza = ['cheese', mushrooms']

>>> new_pizza = pizza + ['onions'] # creates a new python list

>>> new_pizza

['cheese', mushrooms', 'onions']

>>> pizza # the original list is unmodified

['cheese', 'mushrooms']

This is silly, considering that all La Val’s had to do was add onions on top of pizza

instead of making an entirely new pizza.

We can fix this issue with list mutation. In Python, some objects, such as lists

and dictionaries, are mutable, meaning that their contents or state can be changed

over the course of program execution. Other objects, such as numeric types, tuples,

and strings, are immutable, meaning they cannot be changed once they are created.

Therefore, instead of building a new pizza, we can just mutate pizza to add some

onions!

>>> pizza.append('onions')

>>> pizza

['cheese', 'mushrooms', 'onions']

append is what’s known as a method, or a function that belongs to an object, so

we have to call it using dot notation. We’ll talk more about methods later in the

course, but for now, here’s a list of useful list mutation methods:

1. append(el): Adds el to the end of the list, and returns None

2. extend(lst): Extends the list by concatenating it with lst, and returns None

3. insert(i, el): Insert el at index i (does not replace element but adds a new

one), and returns None

4. remove(el): Removes the first occurrence of el in list, otherwise errors, and

returns None

5. pop(i): Removes and returns the element at index i

We can also use the familiar indexing operator with an assignment statement to

change an existing element in a list. For example, we can change the element at

index 1 and to ’tomatoes’ like so:

>>> pizza[1] = 'tomatoes'

>>> pizza

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Data Abstraction, Trees, and Mutability 9

['cheese', 'tomatoes', 'onions']

Questions
2.1 What would Python display? In addition to giving the output, draw the box and

pointer diagrams for each list to the right.

>>> lst1 = [1, 2, 3]

No output

>>> lst2 = lst1

No output

>>> lst1 is lst2

True

>>> lst2.extend([5, 6])

No output

>>> lst1[4]

6

>>> lst1.append([-1, 0, 1])

No output

>>> -1 in lst1

False

>>> lst2[5]

[-1, 0, 1]

>>> lst3 = lst2[:]

No output

>>> lst3.insert(3, lst2.pop(3))

No output

>>> len(lst1)

5

>>> lst1[4] is lst3[6]

True

>>> lst3[lst2[4][1]]

1

>>> lst1[:3] is lst2[:3]

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Data Abstraction, Trees, and Mutability

False

>>> lst1[:3] == lst2[:3]

True

>>> x = (1, 2, [4, 5, 6])

No output

>>> x[2] = [3, 5, 6]

Error

>>> x

(1, 2, [4, 5, 6])

>>> x[2][0] = 3

No output

>>> x

(1, 2, [3, 5, 6])

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Data Abstraction, Trees, and Mutability 11

2.2 Write a function that takes in a value x, a value el, and a list and adds as many

el’s to the end of the list as there are x’s. Make sure to modify the original

list using list mutation techniques.

def add_this_many(x, el, lst):

""" Adds el to the end of lst the number of times x occurs

in lst.

>>> lst = [1, 2, 4, 2, 1]

>>> add_this_many(1, 5, lst)

>>> lst

[1, 2, 4, 2, 1, 5, 5]

>>> add_this_many(2, 2, lst)

>>> lst

[1, 2, 4, 2, 1, 5, 5, 2, 2]

"""

count = 0

for element in lst:

if element == x:

count += 1

while count > 0:

lst.append(el)

count -= 1

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

12 Data Abstraction, Trees, and Mutability

2.3 Write a function that takes in a sequence s and a function fn and returns a dictio-

nary.

The values of the dictionary are lists of elements from s. Each element e in a list

should be constructed such that fn(e) is the same for all elements in that list.

Finally, the key for each value should be fn(e).

def group_by(s, fn):

"""

>>> group_by([12, 23, 14, 45], lambda p: p // 10)

{1: [12, 14], 2: [23], 4: [45]}

>>> group_by(range(-3, 4), lambda x: x * x)

{0: [0], 1: [-1, 1], 4: [-2, 2], 9: [-3, 3]}

"""

grouped = {}

for x in s:

key = fn(x)

if key in grouped:

grouped[key].append(x)

else:

grouped[key] = [x]

return grouped

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

1

1. So Many Options...

(a) Implement the following function partition_options which outputs all the ways to partition a number
total using numbers no larger than biggest.

def partition_options(total, biggest):
"""
>>> partition_options(2, 2)
[[2], [1, 1]]
>>> partition_options(3, 3)
[[3], [2, 1], [1, 1, 1]]
>>> partition_options(4, 3)
[[3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
"""
if total == 0:

return [[]]
elif total < 0 or biggest_num == 0:

return []
else:

with_biggest = partition_options(total-biggest_num, biggest_num)
without_biggest = partition_options(total, biggest_num-1)
with_biggest = [[biggest_num] + elem for elem in with_biggest]
return with_biggest + without_biggest

(b) Return the minimum number of elements from the list that need to be summed in order to add up to T.
The same element can be used multiple times in the sum. For example, for T = 11 and lst = [5, 4, 1] we
should return 3 because at minimum we need to add 3 numbers together (5, 5, and 1). You can assume
that there always exists a linear combination of the elements in lst that equals T.

def min_elements(T, lst):
"""
>>> min_elements(10, [4, 2, 1]) # 4 + 4 + 2
3
>>> min_elements(12, [9, 4, 1]) # 4 + 4 + 4
3
>>> min_elements(0, [1, 2, 3])
0
"""

if T == 0:

return 0

return min([1 + min_elements(T - i, lst) for i in lst if T - i >= 0])

(c) Reminder: don’t forget to check your quiz solutions @ cs61a.org Quiz solutions can be found on the last
page of the discussion solutions, which are posted at the end of each week. If you do not know where to
find discussion solutions @ cs61a.org, see links.cs61a.org/quiz-sols-location

	Trees
	Mutation

