
CS 61A Nonlocal, Iterators, and Generators
Spring 2020 Discussion 6: March 4, 2020 Solutions

1 Nonlocal
Until now, you’ve been able to access names in parent frames, but you have not

been able to modify them. The nonlocal keyword can be used to modify a binding

in a parent frame. For example, consider stepper, which uses nonlocal to modify

num:

def stepper(num):

def step():

nonlocal num # declares num as a nonlocal name

num = num + 1 # modifies num in the stepper frame

return num

return step

>>> step1 = stepper(10)

>>> step1() # Modifies and returns num

11

>>> step1() # num is maintained across separate calls to step

12

>>> step2 = stepper(10) # Each returned step function keeps its own state

>>> step2()

11

As illustrated in this example, nonlocal is useful for maintaining state across dif-

ferent calls to the same function.

However, there are two important caveats with nonlocal names:

• Global names cannot be modified using the nonlocal keyword.

• Names in the current frame cannot be overridden using the nonlocal key-

word. This means we cannot have both a local and nonlocal binding with the

same name in a single frame.

Because nonlocal lets you modify bindings in parent frames, we call functions that

use it mutable functions.

2 Nonlocal, Iterators, and Generators

Questions
1.1 Draw the environment diagram for the following code.

def stepper(num):

def step():

nonlocal num

num = num + 1

return num

return step

s = stepper(3)

s()

s()

Video walkthrough

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://www.youtube.com/watch?v=XsdTV6cAAjY&vq=hd1080&t=38m38s

Nonlocal, Iterators, and Generators 3

1.2 Write a function that takes in a number n and returns a one-argument function.

The returned function takes in a function that is used to update n. It should return

the updated n.

def memory(n):

"""

>>> f = memory(10)

>>> f(lambda x: x * 2)

20

>>> f(lambda x: x - 7)

13

>>> f(lambda x: x > 5)

True

"""

def f(g):

nonlocal n

n = g(n)

return n

return f

Video walkthrough

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://www.youtube.com/watch?v=XsdTV6cAAjY&vq=hd1080&t=57m50s

4 Nonlocal, Iterators, and Generators

1.3 Write a function that takes in no arguments and returns two functions, prepend and

get, which represent the “add to front of list” and “get the ith item” operations,

respectively. Do not use any python built-in data structures like lists or dictionaries.

You do not necessarily need to use all the lines.

This question is more difficult than the average discussion problem; it is an exam

level problem.

def nonlocalist():

"""

>>> prepend, get = nonlocalist()

>>> prepend(2)

>>> prepend(3)

>>> prepend(4)

>>> get(0)

4

>>> get(1)

3

>>> get(2)

2

>>> prepend(8)

>>> get(2)

3

"""

get = lambda x: "Index out of range!"

def prepend(value):

f = ___

def get(i):

if i == 0:

return value

return ___________________(_______________________)

return _________________________, _________________________

get = lambda x: "Index out of range!"

def prepend(value):

nonlocal get

f = get

def get(i):

if i == 0:

return value

return f(i - 1)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Nonlocal, Iterators, and Generators 5

return prepend, lambda x: get(x)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Nonlocal, Iterators, and Generators

2 Iterators
>>> a = [1, 2]

>>> a_iter = iter(a)

>>> next(a_iter)

1

>>> next(a_iter)

2

>>> next(a_iter)

StopIteration

An iterable is a data type which contains a collection of values which can be

processed one by one sequentially. Some examples of iterables we’ve seen include

lists, tuples, strings, and dictionaries. In general, any object that can be iterated

over in a for loop can be considered an iterable.

While an iterable contains values that can be iterated over, we need another type of

object called an iterator to actually retrieve values contained in an iterable. Calling

the iter function on an iterable will create an iterator over that iterable. Each

iterator keeps track of its position within the iterable. Calling the next function

on an iterator will give the current value in the iterable and move the iterator’s

position to the next value.

In this way, the relationship between an iterable and an iterator is analogous to the

relationship between a book and a bookmark - an iterable contains the data that is

being iterated over, and an iterator keeps track of your position within that data.

Once an iterator has returned all the values in an iterable, subsequent calls to next

on that iterable will result in a StopIteration exception. In order to be able to

access the values in the iterable a second time, you would have to create a second

iterator. One important application of iterables and iterators is the for loop. We’ve

counts = [1, 2, 3]

for i in counts:

print(i)

equivalent to following pseudocode

items = iter(counts)

while True

if next(items) errors

exit the loop

i = the value that returned

print(i)

seen how we can use for loops to iterate over iterables like lists and dictionaries.

This only works because the for loop implicitly creates an iterator using the built-

in iter function. Python then calls next repeatedly on the iterator, until it raises

StopIteration.

The code to the right shows how we can mimic the behavior of for loops using

while loops.

Note that most iterators are also iterables - that is, calling iter on them will return

an iterator. This means that we can use them inside for loops. However, calling

iter on most iterators will not create a new iterator - instead, it will simply return

the same iterator.

We can also iterate over iterables in a list comprehension or pass in an iterable to

the built-in function list in order to put the items of an iterable into a list.

In addition to the sequences we’ve learned, Python has some built-in ways to create

iterables and iterators. Here are a few useful ones:

• range(start, end) returns an iterable containing numbers from start to end-

1. If start is not provided, it defaults to 0.

• map(f, iterable) returns a new iterator containing the values resulting from

applying f to each value in iterable.

• filter(f, iterable) returns a new iterator containing only the values in

iterable for which f(value) returns True.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Nonlocal, Iterators, and Generators 7

Questions
2.1 What would Python display? If a StopIteration Exception occurs, write StopIteration,

and if another error occurs, write Error.

>>> lst = [6, 1, "a"]

>>> next(lst)

Error

>>> lst_iter = iter(lst)

>>> next(lst_iter)

6

>>> next(lst_iter)

1

>>> next(iter(lst))

6

>>> [x for x in lst_iter]

["a"]

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Nonlocal, Iterators, and Generators

Generators
>>> def gen_naturals():

... current = 0

... while True:

... yield current

... current += 1

>>> gen = gen_naturals()

>>> gen

<generator object gen at ...>

>>> next(gen)

0

>>> next(gen)

1

A generator function is a special kind of Python function that uses a yield

statement instead of a return statement to report values. When a generator

function is called, it returns a generator object, which is a type of iterator. To the

right, you can see a function that returns an iterator over the natural numbers.

The yield statement is similar to a return statement. However, while a return

statement closes the current frame after the function exits, a yield statement causes

the frame to be saved until the next time next is called, which allows the generator

to automatically keep track of the iteration state.

Once next is called again, execution resumes where it last stopped and continues

until the next yield statement or the end of the function. A generator function can

have multiple yield statements.

Including a yield statement in a function automatically tells Python that this

function will create a generator. When we call the function, it returns a generator

object instead of executing the body. When the generator’s next method is called,

the body is executed until the next yield statement is executed.

When yield from is called on an iterator, it will yield every value from that iter-

ator. It’s similar to doing the following:

for x in an_iterator:

yield x

The example to the right demonstrates different ways of computing the same result.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Nonlocal, Iterators, and Generators 9

Questions
2.1 Write a generator function merge that takes in two infinite generators a and b that

are in increasing order without duplicates and returns a generator that has all the

elements of both generators, in increasing order, without duplicates

def merge(a, b):

"""

>>> def sequence(start, step):

... while True:

... yield start

... start += step

>>> a = sequence(2, 3) # 2, 5, 8, 11, 14, ...

>>> b = sequence(3, 2) # 3, 5, 7, 9, 11, 13, 15, ...

>>> result = merge(a, b) # 2, 3, 5, 7, 8, 9, 11, 13, 14, 15

>>> [next(result) for _ in range(10)]

[2, 3, 5, 7, 8, 9, 11, 13, 14, 15]

"""

first_a, first_b = next(a), next(b)

while True:

if first_a == first_b:

yield first_a

first_a, first_b = next(a), next(b)

elif first_a < first_b:

yield first_a

first_a = next(a)

else:

yield first_b

first_b = next(b)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Nonlocal, Iterators, and Generators

2.2 Write a generator function generate_subsets that returns all subsets of the positive

integers from 1 to n. Each call to this generator’s next method will return a list of

subsets of the set [1, 2, ..., n], where n is the number of previous calls to next.

def generate_subsets():

"""

>>> subsets = generate_subsets()

>>> for _ in range(3):

... print(next(subsets))

...

[[]]

[[], [1]]

[[], [1], [2], [1, 2]]

"""

subsets = [[]]

n = 1

while True:

yield subsets

subsets = subsets + [s + [n] for s in subsets]

n += 1

We start with a base list of subsets. To get the next sequence of subsets, we need

two things:

• All current subsets will continue to be valid subsets in the future.

• We take all the subsets we currently have, and add the next number. These

are also valid subsets.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Nonlocal, Iterators, and Generators 11

2.3 Implement sum paths gen, which takes in a tree t and and returns a generator which

yields the sum of all the nodes from a path from the root of a tree to a leaf.

You may yield the sums in any order.

def sum_paths_gen(t):

"""

>>> t1 = tree(5)

>>> next(sum_paths_gen(t1))

5

>>> t2 = tree(1, [tree(2, [tree(3), tree(4)]), tree(9)])

>>> sorted(sum_paths_gen(t2))

[6, 7, 10]

"""

if ___________________________:

yield ____________________

for __________________________:

for __________________________:

yield ____________________

def sum_paths_gen(t):

if is_leaf(t):

yield label(t)

for b in branches(t):

for s in sum_paths_gen(b):

yield s + label(t)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

1

1. Trie Recursion

A trie is a type of tree where the values of each node are letters representing part of a larger word. A valid
word is a string containing the letters along any path from root to leaf. For simplicity, assume that our trie is
represented with the tree abstract data type and where the value of each node contains just a single letter.

Recall: The tree abstract data type is defined with the following constructors and selectors.

def tree(label, branches=[]):
"""Construct a tree with the given label value and a list of branches."""

def label(tree):
"""Return the label value of a tree."""

def branches(tree):
"""Return the list of branches of the given tree."""

def is_tree(tree):
"""Returns True if the given tree is a tree, and False otherwise."""

def is_leaf(tree):
"""Returns True if the given tree's list of branches is empty, and False otherwise."""

Implement collect_words, which takes in a trie t and returns a Python list containing all the words contained
in the trie.

>>> greetings = tree('h', [tree('i'),
... tree('e', [tree('l', [tree('l', [tree('o')])]),
... tree('y')])])
>>> print_tree(greetings)
h

i
e
l

l
o

y

def collect_words(t):
"""Return a list of all the words contained in the tree where the value of each node in
the tree is an individual letter. Words terminate at the leaf of a tree.

>>> collect_words(greetings)
['hi', 'hello', 'hey']
"""

if is_leaf(t):

return [label(t)]

words = []

for branch in branches(t):

words += [label(t) + word for word in collect_words(branch)]

return words

	Nonlocal
	Iterators

