
CS 61A OOP, Linked Lists, Efficiency
Spring 2020 Discussion 7: March 11, 2020

1 Object Oriented Programming
In a previous lecture, you were introduced to the programming paradigm known

as Object-Oriented Programming (OOP). OOP allows us to treat data as objects -

like we do in real life.

For example, consider the class Student. Each of you as individuals is an instance

of this class. So, a student Angela would be an instance of the class Student.

Details that all CS 61A students have, such as name, are called instance attributes.

Every student has these attributes, but their values differ from student to student.

An attribute that is shared among all instances of Student is known as a class

attribute. An example would be the students attribute; the number of students

that exist is not a property of any given student but rather of all of them.

All students are able to do homework, attend lecture, and go to office hours. When

functions belong to a specific object, they are said to be methods. In this case,

these actions would be bound methods of Student objects.

Here is a recap of what we discussed above:

• class: a template for creating objects

• instance: a single object created from a class

• instance attribute: a property of an object, specific to an instance

• class attribute: a property of an object, shared by all instances of a class

• method: an action (function) that all instances of a class may perform

2 OOP, Linked Lists, Efficiency

Questions
1.1 Below we have defined the classes Professor and Student, implementing some of

what was described above. Remember that we pass the self argument implicitly to

instance methods when using dot-notation. There are more questions on the next

page.

class Student:

students = 0 # this is a class attribute

def __init__(self, name, ta):

self.name = name # this is an instance attribute

self.understanding = 0

Student.students += 1

print("There are now", Student.students, "students")

ta.add_student(self)

def visit_office_hours(self, staff):

staff.assist(self)

print("Thanks, " + staff.name)

class Professor:

def __init__(self, name):

self.name = name

self.students = {}

def add_student(self, student):

self.students[student.name] = student

def assist(self, student):

student.understanding += 1

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

OOP, Linked Lists, Efficiency 3

What will the following lines output?

>>> snape = Professor("Snape")

>>> harry = Student("Harry", snape)

>>> harry.visit_office_hours(snape)

>>> harry.visit_office_hours(Professor("Hagrid"))

>>> harry.understanding

>>> [name for name in snape.students]

>>> x = Student("Hermione", Professor("McGonagall")).name

>>> x

>>> [name for name in snape.students]

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 OOP, Linked Lists, Efficiency

1.2 We now want to write three different classes, Server, Client, and Email to simulate

email. Fill in the definitions below to finish the implementation! There are more

methods to fill out on the next page.

We suggest that you approach this problem by first filling out the Email class, then

fill out the register client method of Server, then implement the Client class,

and lastly fill out the send method of the Server class.

class Email:

"""Every email object has 3 instance attributes: the

message, the sender name, and the recipient name.

"""

def __init__(self, msg, sender_name, recipient_name):

class Server:

"""Each Server has an instance attribute clients, which

is a dictionary that associates client names with

client objects.

"""

def __init__(self):

self.clients = {}

def send(self, email):

"""Take an email and put it in the inbox of the client

it is addressed to.

"""

def register_client(self, client, client_name):

"""Takes a client object and client_name and adds it

to the clients instance attribute.

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

OOP, Linked Lists, Efficiency 5

class Client:

"""Every Client has instance attributes name (which is

used for addressing emails to the client), server

(which is used to send emails out to other clients), and

inbox (a list of all emails the client has received).

"""

def __init__(self, server, name):

self.inbox = []

def compose(self, msg, recipient_name):

"""Send an email with the given message msg to the

given recipient client.

"""

def receive(self, email):

"""Take an email and add it to the inbox of this

client.

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 OOP, Linked Lists, Efficiency

2 Inheritance
Python classes can implement a useful abstraction technique known as inheritance.

To illustrate this concept, consider the following Dog and Cat classes.

class Dog():

def __init__(self, name, owner):

self.is_alive = True

self.name = name

self.owner = owner

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name + " says woof!")

class Cat():

def __init__(self, name, owner, lives=9):

self.is_alive = True

self.name = name

self.owner = owner

self.lives = lives

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name + " says meow!")

Notice that because dogs and cats share a lot of similar qualities, there is a lot of

repeated code! To avoid redefining attributes and methods for similar classes, we

can write a single superclass from which the similar classes inherit. For example,

we can write a class called Pet and redefine Dog as a subclass of Pet:

class Pet():

def __init__(self, name, owner):

self.is_alive = True # It's alive!!!

self.name = name

self.owner = owner

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name)

class Dog(Pet):

def talk(self):

print(self.name + ' says woof!')

Inheritance represents a hierarchical relationship between two or more classes where

one class is a more specific version of the other, e.g. a dog is a pet. Because Dog

inherits from Pet, we didn’t have to redefine init or eat. However, since we want

Dog to talk in a way that is unique to dogs, we did override the talk method.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

OOP, Linked Lists, Efficiency 7

Questions
2.1 Below is a skeleton for the Cat class, which inherits from the Pet class. To com-

plete the implementation, override the init and talk methods and add a new

lose_life method.

Hint: You can call the init method of Pet to set a cat’s name and owner.

class Cat(Pet):

def __init__(self, name, owner, lives=9):

def talk(self):

""" Print out a cat's greeting.

>>> Cat('Thomas', 'Tammy').talk()

Thomas says meow!

"""

def lose_life(self):

"""Decrements a cat's life by 1. When lives reaches zero, 'is_alive'

becomes False. If this is called after lives has reached zero, print out

that the cat has no more lives to lose.

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 OOP, Linked Lists, Efficiency

2.2 More cats! Fill in this implemention of a class called NoisyCat, which is just like a

normal Cat. However, NoisyCat talks a lot – twice as much as a regular Cat!

class _____________________: # Fill me in!

"""A Cat that repeats things twice."""

def __init__(self, name, owner, lives=9):

Is this method necessary? Why or why not?

def talk(self):

"""Talks twice as much as a regular cat.

>>> NoisyCat('Magic', 'James').talk()

Magic says meow!

Magic says meow!

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

OOP, Linked Lists, Efficiency 9

2.3 (Summer 2013 Final) What would Python display?

class A:

def f(self):

return 2

def g(self, obj, x):

if x == 0:

return A.f(obj)

return obj.f() + self.g(self, x - 1)

class B(A):

def f(self):

return 4

>>> x, y = A(), B()

>>> x.f()

>>> B.f()

>>> x.g(x, 1)

>>> y.g(x, 2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 OOP, Linked Lists, Efficiency

3 Linked Lists
There are many different implementations of sequences in Python. Today, we’ll

explore the linked list implementation.

A linked list is either an empty linked list, or a Link object containing a first value

and the rest of the linked list.

To check if a linked list is an empty linked list, compare it against the class attribute

Link.empty:

if link is Link.empty:

print('This linked list is empty!')

else:

print('This linked list is not empty!')

Implementation
class Link:

empty = ()

def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)

self.first = first

self.rest = rest

def __repr__(self):

if self.rest:

rest_str = ', ' + repr(self.rest)

else:

rest_str = ''

return 'Link({0}{1})'.format(repr(self.first), rest_str)

def __str__(self):

string = '<'

while self.rest is not Link.empty:

string += str(self.first) + ' '

self = self.rest

return string + str(self.first) + '>'

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

OOP, Linked Lists, Efficiency 11

Questions
3.1 Write a function that takes in a a linked list and returns the sum of all its elements.

You may assume all elements in lnk are integers.

def sum_nums(lnk):

"""

>>> a = Link(1, Link(6, Link(7)))

>>> sum_nums(a)

14

"""

3.2 Write a function that takes in a Python list of linked lists and multiplies them

element-wise. It should return a new linked list.

If not all of the Link objects are of equal length, return a linked list whose length is

that of the shortest linked list given. You may assume the Link objects are shallow

linked lists, and that lst of lnks contains at least one linked list.

def multiply_lnks(lst_of_lnks):

"""

>>> a = Link(2, Link(3, Link(5)))

>>> b = Link(6, Link(4, Link(2)))

>>> c = Link(4, Link(1, Link(0, Link(2))))

>>> p = multiply_lnks([a, b, c])

>>> p.first

48

>>> p.rest.first

12

>>> p.rest.rest.rest is Link.empty

True

"""

3.3 Implement filter link, which takes in a linked list link and a function f and

returns a generator which yields the values of link for which f returns True.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

12 OOP, Linked Lists, Efficiency

Try to implement this both using a while loop and without using any form of

iteration.

def filter_link(link, f):

"""

>>> link = Link(1, Link(2, Link(3)))

>>> g = filter_link(link, lambda x: x % 2 == 0)

>>> next(g)

2

>>> next(g)

StopIteration

>>> list(filter_link(link, lambda x: x % 2 != 0))

[1, 3]

"""

while _________________________:

if ________________________:

def filter_no_iter(link, f):

"""

>>> link = Link(1, Link(2, Link(3)))

>>> list(filter_no_iter(link, lambda x: x % 2 != 0))

[1, 3]

"""

if ____________________________:

return

elif __________________________:

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

1

1. Midterm Review Snax

(a) Two robots are handing at midterm snacks to 61A students who are lined up in the hallway. The left robot
can hold x snacks at once, and the right robot can hold y snacks. Both robots can refill their capacity at
any given time from a bottomless pit of snacks. However, when one robot (A) goes to refill snacks, the
other robot (B) must wait until A returns before B continues handing out snacks. In other words, A and
B must both feed a student (in full) on their respective ends of the hallway at the same time. Both robots
can refill at the same time.
The list snax contains the number of snacks that must be given to each student in order for that student
to be satisfied. Return the minimum number of refills required for both robots to feed every student in
the hallway. You can assume that the individual capacity of each robot is ≥ max(snax), and that each
robot cannot move on from its current student until the student has been satisfied.

def feed(snax, x, y):
"""
>>> feed([1, 1, 1], 2, 2) # The two robots both refill once at the beginning
2
>>> feed([1, 2, 2], 2, 2) # Only one robot refills to feed the middle student
3
>>> feed([1, 1, 1, 2, 2], 2, 2)
4
>>> feed([3, 2, 1, 3, 2, 1, 1, 2, 3], 3, 3)
6
"""
def helper(lst, p, q):

if ___:

return ___

elif ___:

return ___

elif ___:

return ___

else:

a = ___

b = ___

c = ___

d = ___

return ____________(a, b, c, d)

return helper(snax, ________________________________)

	Object Oriented Programming
	Inheritance
	Linked Lists

