
CS 61A Interpreters
Spring 2020 Discussion 10: April 8, 2020 Solutions

1 Calculator
calc> (+ 2 2)

4

calc> (- 5)

-5

calc> (* (+ 1 2) (+ 2 3))

15

An interpreter is a program that understands other programs. Today, we will ex-

plore how to interpret a simple language that uses Scheme syntax called Calculator.

The Calculator language includes only the four basic arithmetic operations: +, −,

∗, and /. These operations can be nested and can take any numbers of arguments.

A few examples of calculator expressions and their corresponding values are given

on the right. Recall that the reader component of an interpreter parses input

strings and represents them as data structures in the implementing language. In this

case, we need to represent Calculator expressions as Python objects. To represent

numbers, we can just use Python numbers. To represent the names of the arithmetic

procedures, we can use Python strings (e.g. ’+’).

Call expressions are a bit more complicated. First, note that like Scheme call

expressions, call expressions in Calculator look just like Scheme lists. For example,

to construct the expression (+ 2 3) in Scheme, we would do the following:

scm> (cons '+ (cons 2 (cons 3 nil)))

(+ 2 3)

To represent Scheme lists in Python, we will use the Pair class. A Pair instance

holds exactly two elements. Accordingly, the Pair constructor takes in two argu-

ments, and to make a list we must nest calls to the constructor and pass in nil

as the second element of the last pair. Note that in our implementation, nil is

bound to a special user-defined object that represents an empty list, whereas nil

in Scheme is actually an empty list.

>>> Pair('+', Pair(2, Pair(3, nil)))

Pair('+', Pair(2, Pair(3, nil)))

Each Pair instance has two instance attributes: first and rest, which are bound

to the first and second elements of the pair respectively.

>>> p = Pair('+', Pair(2, Pair(3, nil)))

>>> p.first

'+'

>>> p.rest

Pair(2, Pair(3, nil))

>>> p.rest.first

2

Here’s an implementation of what we described:

2 Interpreters

class Pair:

"""Represents the built-in pair data structure in Scheme."""

def __init__(self, first, rest):

self.first = first

if not scheme_valid_cdrp(rest):

raise SchemeError("cdr can only be a pair, nil, or a promise but was {}".format(rest))

self.rest = rest

def map(self, fn):

"""Maps fn to every element in a list, returning a new

Pair.

>>> Pair(1, Pair(2, Pair(3, nil))).map(lambda x: x * x)

Pair(1, Pair(4, Pair(9, nil)))

"""

assert isinstance(self.rest, Pair) or self.rest is nil, \

"rest element in pair must be another pair or nil"

return Pair(fn(self.first), self.rest.map(fn))

def __repr__(self):

return 'Pair({}, {})'.format(self.first, self.rest)

class nil:

"""Represents the special empty pair nil in Scheme."""

def map(self, fn):

return nil

def __getitem__(self, i):

raise IndexError('Index out of range')

def __repr__(self):

return 'nil'

nil = nil() # this hides the nil class *forever*

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Interpreters 3

Questions
1.1 Write out the Calculator expression with proper syntax that corresponds to the

following Pair constructor calls. Also, draw out a box and pointer diagram corre-

sponding to each input.

>>> Pair('+', Pair(1, Pair(2, Pair(3, Pair(4, nil)))))

> (+ 1 2 3 4)

>>> Pair('+', Pair(1, Pair(Pair('*', Pair(2, Pair(3, nil))), nil)))

> (+ 1 (* 2 3))

Box and pointers solutions

Video walkthrough

1.2 Answer the following questions about a Pair instance representing the Calculator

expression (+ (- 2 4) 6 8).

i. Write out the Python expression that returns a Pair representing the given

expression, and draw a box and pointer diagram corresponding to it.

>>> Pair('+', Pair(Pair('-', Pair(2, Pair(4, nil))), Pair(6, Pair(8, nil))))

Box and pointer diagram

ii. What is the operator of the call expression? If the Pair you constructed in the

previous part was bound to the name p, how would you retrieve the operator?

p.first

iii. What are the operands of the call expression? If the Pair you constructed in

Part (i) was bound to the name p, how would you retrieve a list containing all

of the operands? How would you retrieve only the first operand?

p.rest to get a list containing all the operands. p.rest.first to get the first

operand by itself.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://goo.gl/6VKGQX
https://youtu.be/zIvYrA76GRo?t=1m59s
https://goo.gl/2pxLFY

4 Interpreters

2 Evaluation
The evaluation component of an interpreter determines the type of an expression

and executes corresponding evaluation rules.

Here are the evaluation rules for the three types of Calculator expressions:

1. Numbers are self-evaluating. For example, the numbers 3.14 and 165 just

evaluate to themselves.

2. Names are looked up in the OPERATORS dictionary. Each name (e.g. ’+’) is

bound to a corresponding function in Python that does the appropriate operation

on a list of numbers (e.g. sum).

3. Call expressions are evaluated the same way you’ve been doing them all

semester:

(1) Evaluate the operator, which evaluates to a function.

(2) Evaluate the operands from left to right.

(3) Apply the function to the value of the operands.

The function calc_eval takes in a Calculator expression represented in Python and

implements each of these rules:

def calc_eval(exp):

"""Evaluates a Calculator expression represented as a Pair."""

if isinstance(exp, Pair): # Call expressions

fn = calc_eval(exp.first)

args = list(exp.rest.map(calc_eval))

return calc_apply(fn, args)

elif exp in OPERATORS: # Names

return OPERATORS[exp]

else: # Numbers

return exp

Note that calc eval is recursive! In order to evaluate call expressions, we must call

calc eval on the operator and each of the operands.

The apply step in the Calculator language is straight-forward, since we only have

primitive procedures. This step is more complex when it comes to applying Scheme

procedures, which may include user-defined procedures.

Given the Python function that implements the appropriate Calculator operation

and a Python list of numbers, the calc_apply function simply calls the function on

the arguments, and regular Python evalutation rules take place.

def calc_apply(fn, args):

"""Applies a Calculator operation to a list of numbers."""

return fn(args)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Interpreters 5

Questions
2.1 How many calls to calc eval and calc apply would it take to evaluate each of the

following Calculator expressions?

> (+ 2 4 6 8)

6 calls to eval: 1 for the entire expression, and then 1 each for the operator and

each operand.

1 call to apply the addition operator.

> (+ 2 (* 4 (- 6 8)))

10 calls to eval: 1 for the whole expression, then 1 for each of the operators and

operands. When we encounter another call expression, we have to evaluate the

operators and operands inside as well.

3 calls to apply the function to the arguments for each call expression.

Video walkthrough

2.2 Suppose we want to add handling for comparison operators >, <, and = as well as

and expressions to our Calculator interpreter. These should work the same way

they do in Scheme.

calc> (and (= 1 1) 3)

3

calc> (and (+ 1 0) (< 1 0) (/ 1 0))

#f

i. Are we able to handle expressions containing the comparison operators (such

as <, >, or =) with the existing implementation of calc eval? Why or why not?

Comparison expressions are regular call expressions, so we need to evaluate the

operator and operands and then apply a function to the arguments. Therefore,

we do not need to change calc eval. We simply need to add new entries to the

OPERATORS dictionary that map ’<’, ’>’, and ’=’ to functions that perform the

appropriate comparison operation.

ii. Are we able to handle and expressions with the existing implementation of

calc eval? Why or why not?

Since and is a special form that short circuits on the first false-y operand,

we cannot handle these expressions the same way we handle call expressions.

We need to add special handling for combinations that don’t evaluate all the

operands.

iii. Now, complete the implementation below to handle and expressions. You may

assume the conditional operators (e.g. <, >, =, etc) have already been imple-

mented for you.

def calc_eval(exp):

if isinstance(exp, Pair):

if _______________________: # and expressions

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://youtu.be/ZHPdJzZ3g14

6 Interpreters

return eval_and(exp.rest)

else: # Call expressions

return calc_apply(calc_eval(exp.first), list(exp.rest.map(calc_eval)))

elif exp in OPERATORS: # Names

return OPERATORS[exp]

else: # Numbers

return exp

def eval_and(operands):

def calc_eval(exp):

if isinstance(exp, Pair):

if exp.first == 'and': # and expressions

return eval_and(exp.rest)

else: # Call expressions

return calc_apply(calc_eval(exp.first), list(exp.rest.map(calc_eval)))

elif exp in OPERATORS: # Names

return OPERATORS[exp]

else: # Numbers

return exp

def eval_and(operands):

curr, val = operands, True

while curr is not nil:

val = calc_eval(curr.first)

if val is False:

return False

curr = curr.rest

return val

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Interpreters 7

3 List Questions
3.1 Write a function that takes an element x and a non-negative integer n, and returns

a list with x repeated n times.

(define (replicate x n)

(if (= n 0)

nil

(cons x (replicate x (- n 1)))))

Video walkthrough

scm> (replicate 5 3)

(5 5 5)

3.2 A run-length encoding is a method of compressing a sequence of letters. The list

(a a a b a a a a) can be compressed to ((a 3) (b 1) (a 4)), where the compressed

version of the sequence keeps track of how many letters appear consecutively.

Write a function that takes a compressed sequence and expands it into the original

sequence. Hint: You may want to use my-append and replicate.

Recall my-append is as follows, where my-append takes in two lists and concatenates

them together.

(define (my-append a b)

(if (null? a)

b

(cons (car a) (my-append (cdr a) b))))

scm> (my-append '(1 2 3) '(2 3 4))

(1 2 3 2 3 4)

(define (uncompress s)

(if (null? s)

s

(my-append (replicate (car (car s)) (car (cdr (car s))))

(uncompress (cdr s)))))

Video walkthrough

scm> (uncompress '((a 1) (b 2) (c 3)))

(a b b c c c)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://youtu.be/8FO2ZYkXwb0?t=3m55s
https://youtu.be/8FO2ZYkXwb0?t=10m27s

8 Interpreters

3.3 Write a function that takes a procedure and applies it to every element in a given

list.

(define (map fn lst)

(if (null? lst)

nil

(cons (fn (car lst)) (map fn (cdr lst)))))

scm> (map (lambda (x) (* x x)) '(1 2 3))

(1 4 9)

3.4 Fill in the following to complete an abstract tree data type:

(define (make-tree label branches) (cons label branches))

(define (label tree)

(define (branches tree)

(define (label tree) (car tree))

(define (branches tree) (cdr tree))

3.5 Using the abstract data type above, write a function that sums up the entries of a

tree, assuming that the entries are all numbers.

Hint: you may want to use the map function you defined above, and also write a

helper function for summing up the entries of a list.

(define (tree-sum tree)

(+ (label tree) (sum (map tree-sum (branches tree)))))

(define (sum lst)

(if (null? lst) 0 (+ (car lst) (sum (cdr lst)))))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

1

1. . . . That Factors Into Your Learning

Implement the factors procedure in Scheme, which takes an integer n that is greater than 1 and returns a list
of all of the factors of n from 1 to n - 1 in increasing order. You may not need to use all the lines.

Hint : The built-in modulo procedure returns the remainder when dividing one number by the other.

scm> (modulo 5 3)
2
scm> (modulo 14 2)
0

(define (factors n)

(define (factors-helper i n)

(if (= i n)

nil

(if (= (modulo n i) 0)

(cons i (factors-helper (+ i 1) n))

(factors-helper (+ i 1) n)

)))

(factors-helper 1 n)

)

scm> (factors 6)
(1 2 3)
scm> (factors 7)
(1)
scm> (factors 28)
(1 2 4 7 14)

2. A Deep Problem

deep-squares, which takes a deep list of numbers and returns a list with each value squared, is given below.

1 (define (deep-squares lol)
2 (cond ((null? lol) '())
3 ((list? (car lol))
4 (cons (map square (car lol))
5 (deep-squares (cdr lol))))
6 (cons (square (car lol)) (deep-squares (cdr lol)))))

For which of the following inputs will deep-squares not work as intended?

(a) (deep-squares '()) Works # Broken

(b) (deep-squares '(1 (2 3) 4)) # Works Broken

(c) (deep-squares '(1 (2 3) ((4)) 5)) # Works Broken

2

Which line number(s) contain(s) the bug(s)? # 1 # 2 # 3 4 # 5 6
The final clause in the cond is missing a set of parentheses! (the word else is optional; we just need to enclose
line 6 in one more pair of parentheses). Also, line 4 should be (cons (deep-squares (car lol))

	Calculator
	Evaluation
	List Questions

